Transient removal of extracellular Mg(2+) elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation.
نویسندگان
چکیده
Previous work has shown that seizure-like activity can disrupt the induction of long-term potentiation (LTP). However, how seizure-like event disrupts the LTP induction remains unknown. To understand the cellular and molecular mechanisms underlying this process better, a set of studies was implemented in area CA1 of rat hippocampal slices using extracellular recording methods. We showed here that prior transient seizure-like activity generated by perfused slices with Mg(2+)-free artificial cerebrospinal fluid (ACSF) exhibited a persistent suppression of LTP induction. This effect lasted between 2 and 3 h after normal ACSF replacement and was specifically inhibited by N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphovaleric acid (D-APV) and L-type voltage-operated Ca(2+) channel (VOCC) blocker nimodipine, but not by non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In addition, this suppressive effect was specifically blocked by the selective protein kinase C (PKC) inhibitor NPC-15437. However, neither Ca(2+)/calmodulin-dependent protein kinase II inhibitor KN-62 nor cAMP-dependent protein kinase inhibitor Rp-adenosine 3', 5'-cyclic monophosphothioate (Rp-cAMPS) affected this suppressive effect. This persistent suppression of LTP was not secondary to the long-lasting changes in NMDA receptor activation, because the isolated NMDA receptor-mediated responses did not show a long-term enhancement in response to a 30-min Mg(2+)-free ACSF application. Additionally, in prior Mg(2+)-free ACSF-treated slices, the entire frequency-response curve of LTP and long-term depression (LTD) is shifted systematically to favor LTD. These results suggest that the increase of Ca(2+) influx through NMDA channels and L-type VOCCs in turn triggering a PKC-dependent signaling cascade is a possible cellular basis underlying this seizure-like activity-induced inhibition of LTP.
منابع مشابه
Transient Removal of Extracellular Mg Elicits Persistent Suppression of LTP at Hippocampal CA1 Synapses Via PKC Activation
Hsu, Kuei-Sen, Wen-Chia Ho, Chiung-Chun Huang, and JingJane Tsai. Transient removal of extracellular Mg elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation. J Neurophysiol 84: 1279–1288, 2000. Previous work has shown that seizure-like activity can disrupt the induction of long-term potentiation (LTP). However, how seizure-like event disrupts the LTP induction re...
متن کاملCysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices
Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...
متن کاملCysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices
Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...
متن کاملPositive modulation of long-term potentiation at hippocampal CA1 synapses by low micromolar concentrations of zinc.
The role of zinc, an endogenous N-methyl-d-aspartate (NMDA) receptor antagonist, in long-term potentiation (LTP) at hippocampal CA1 synapses is poorly understood. In the present study, the effect of exogenous zinc and zinc chelators on CA1 LTP was examined by using hippocampal slices from rats. CA1 LTP after tetanic stimulation (100 Hz, 1 s) was potentiated in the presence of 5 microM ZnCl(2), ...
متن کاملCritical involvement of postsynaptic protein kinase activation in long-term potentiation at hippocampal mossy fiber synapses on CA3 interneurons.
Hippocampal mossy fiber (MF) synapses on area CA3 lacunosum-moleculare (L-M) interneurons are capable of undergoing a Hebbian form of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) induced by the same type of high-frequency stimulation (HFS) that induces LTP at MF synapses on pyramidal cells. LTP of MF input to L-M interneurons occurs only at synapses containing mostly calcium-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 3 شماره
صفحات -
تاریخ انتشار 2000